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Abstract

Purpose – The purpose of this paper is to report on the flow past a porous square cylinder,
implementing the stress jump treatments for the porous-fluid interface.

Design/methodology/approach – The numerical method was developed for flows involving an
interface between a homogenous fluid and a porous medium. It is based on the finite volume method
with body-fitted and multi-block grids. The Brinkman-Forcheimmer extended model was used to
govern the flow in the porous medium region. At its interface, a shear stress jump that includes the
inertial effect was imposed, together with a continuity of normal stress.

Findings – The present model is validated by comparing with those for the flow around a solid
circular cylinder. Results for flow around porous square cylinder are presented with flow
configurations for different Darcy number, 1022 to 1025, porosity from 0.4 to 0.8, and Reynolds
number 20 to 250. The flow develops from steady to unsteady periodic vortex shedding state. It was
found that the stress jump interface condition can cause flow instability. The first coefficient b has a
more noticeable effect whereas the second coefficient b1 has very small effect, even for Re ¼ 200. The
effects of the porosity, Darcy number, and Reynolds number on lift and drag coefficients, and the
length of circulation zone or shedding period are studied.

Originality/value – The present study implements the numerical method based on finite volume
method with a collocated variable arrangement to treat the stress jump condition.

Keywords Porous materials, Fluid flow, Fluid power cylinders, Numerical analysis
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Nomenclature
A ¼ discretization coefficients using

SIMPLEC method
Cd ¼ drag coefficient
CF ¼ Forchheimer coefficient
Cl ¼ lift coefficient
Da ¼ Darcy number
ex ¼ unit vector along x-axis
ey ¼ unit vector along y-axis
H ¼ side length of the square cylinder

(m)

K ¼ permeability of porous medium
(m2)

kf ¼ fluid thermal conductivity
keff ¼ effective thermal conductivity of

porous media
n ¼ unit vector along normal direction

of the interface
Pr ¼ fluid Prandtl number
p, pf ¼ local average and intrinsic

average pressure (Pa)
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Re ¼ Reynolds number
S ¼ surface vector
t ¼ unit vector along tangential

direction to the interface, time
U ¼ incoming flow velocity
u, v ¼ velocity components along x- and

y-axes, respectively
x, y ¼ Cartesian coordinates

Greek symbols
b ¼ stress jump parameter
b1 ¼ stress jump parameter related to

inertia
1 ¼ porosity
1c ¼ convergence error
m ¼ dynamic viscosity
l ¼ interpolation factor
r ¼ fluid density
w ¼ general dependent variable

DV ¼ finite volume of the control cell

Subscripts
fluid ¼ fluid part
eff ¼ effective value for porous media
e ¼ east
n ¼ north
w ¼ west
s ¼ south
interface ¼ interface value
p ¼ control volume center point
porous ¼ porous part
t ¼ tangential direction to the interface

Superscripts
c ¼ convection effect
d ¼ diffusion effect
m ¼ iteration time step
n ¼ iteration step for each time level

1. Introduction
The flow past bluff bodies, especially cylinders, has been investigated extensively for a
long time. Most of these studies concentrated on the circular cylinder case under free
flow conditions as reviewed by Williamson (1996) and Zdravkovich (1997). However,
the research on square cylinder case has not been investigated to the same extent,
although it plays a dominant role in many technical applications, such as building
aerodynamics, as studied by Davis and Moore (1982), Davis et al.(1984), Franke et al.
(1990), Klekar and Patankar (1992) and Suzuki et al. (1993). They have provided
numerical and experimental data about lift coefficient, drag coefficient, base pressure
and Strouhal frequency for a range of Reynolds number up to 2,800.

However, most of the studies focused on the flow past impermeable bodies, and the
flow behind a porous body has not been broadly investigated. Most of the research about
flow behind porous bodies concentrated on the steady-state convection heat transfer
phenomena (Huang and Vafai, 1993; Martin et al., 1998). For unsteady problems, the flow
over a circular cylinder with surface suction and blowing was theoretically investigated
by Cohen (1991). He derived a model for St-Re relationship by order of magnitude
estimation. Ling et al. (1993) numerically verified this model for flow over a square
cylinder and obtained a similar trend between Strouhal and Reynolds numbers. Their
research does not consider porous flow. Jue (2004) simulated vortex shedding behind a
porous square cylinder by finite element method, for which the details are given later.

The porous-interface conditions are essential for solving the governing equations in
the fluid and porous regions as they are applied at the interface to close the two sets of
equations.

Beavers and Joseph (1967) proposed a semi-empirical slip boundary condition. Neale
and Nader (1974) assumed continuous boundary conditions in both velocity and stress.
Kim and Choi (1996) used an effective viscosity in the formulation of the continuous
stress condition at the interface. By matching both velocity and stress, Vafai and Kim
(1990) provided an exact solution for the fluid flow at the interface, which includes the
inertial and boundary effects.
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A stress jump condition at the interface was deduced by Ochoa-Tapia and Whitaker
(1995a, b) based on the non-local form of the volume averaged method. Based on the
Forchheimer equation with the Brinkman correction and the Navier-Stokes equations,
Ochoa-Tapia and Whitaker (1998) developed another stress jump condition which
includes the inertial effects. Two coefficients appear in this jump condition: one is
associated with an excess viscous stress and the other is related to an excess inertial stress.

Numerical solutions for the coupled viscous and porous flows have been attempted
by Gartling et al. (1996), Silva and de Lemos (2003), Costa et al. (2004), Jue (2004) and
Betchen et al. (2006). Different types of interfacial conditions between a porous medium
and a homogenous fluid have been proposed; and found to have a pronounced effect on
the velocity field as shown by Alazmi and Vafai (2001). Although the one-domain
approach, or a continuity of both velocity and stress, is easier to implement, the stress
jump conditions have been commonly adopted.

The implementation of the numerical methodology on the stress jump condition based
on Ochoa-Tapia and Whitaker (1995a, b) can be found in the work of Silva and de Lemos
(2003). In their study, only the jump in shear stress was included and no special treatment
on velocity derivatives was mentioned. However, for flow in general, it is needed to consider
how to formulate the velocity derivatives at the interface. Also, for the two-dimensional
problem, the normal stress condition is needed to close the sets of equations.

Jue (2004) simulated vortex shedding behind a porous square cylinder by finite
element method. In his study, a general non-Darcy porous media model was applied to
describe the flows both inside and outside the cylinder. A harmonic mean was used to
treat the sudden change between the fluid and porous medium. He also pointed out that
Darcy number demonstrates more influence on the flow field than porosity does.

The objective of the present study was to implement the numerical method based on
finite volume method with a collocated variable arrangement to treat the stress jump
condition given by Ochoa-Tapia and Whitaker (1998), which includes the inertial
effects. The numerical method was developed for flows involving an interface between
a homogenous fluid and a porous medium and it is based on the finite volume method
with body-fitted and multi-block grids. The same interface conditions for steady flow
around a porous square cylinder has been analysed by Yu et al. (2007), only for
Re ¼ 20. In our simulation, steady and unsteady flow around a porous square cylinder
are both considered, with Re up to 250. The stress jump interface condition effects to
the drag coefficient, lift coefficient and shedding period are also studied.

2. Mathematical model
A two-dimensional, laminar and incompressible flow past a square cylinder is
considered here (Figure 1(a)). The fluid is Newtonian and the properties of the fluid are
assumed to be constant.

The governing equations for a homogenous fluid region, using vector form, can be
written as:

7 · ~u ¼ 0 ð1Þ

r
›u

›t
þ 7 · ðr~u~uÞ ¼ 27pþ m72~u ð2Þ

where p is the pressure; r is the mass density of the fluid; and m is the fluid dynamic
viscosity.
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The porous medium is considered to be rigid, homogeneous and isotropic; and
saturated with the same single-phase fluid as that in the homogenous fluid region.
Considering viscous and inertial effects, the governing equations for porous region
based on Darcy-Brinkman-Forchheimer extended model can be expressed as with Hsu
and Cheng (1990) and Nithiarasu et al. (2002):

Figure 1.
Schematic of flow past a
porous square cylinder

50H H
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24.5H

50H

Porous CylinderU∞

(a) Computational domain

(b) Mesh illustration
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7 · ~u ¼ 0 ð3Þ

r
›u

›t|{z}
Unsteady term

þ 7 ·
r~u~u

1

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Convective term

¼ 27ð1p*Þ|fflfflfflfflffl{zfflfflfflfflffl}
Pressure term

þ m72~u|fflffl{zfflffl}
Brinkman term

2
m1

K
~u|ffl{zffl}

Darcy term

2
r1CF j~ujffiffiffiffi

K
p ~u|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Forchheimer term

ð4Þ

where ~u is the local average velocity vector (Darcy velocity); p* is the intrinsic average
pressure; m is the fluid dynamic viscosity; 1 is the porosity; K is the permeability; and
CF is Forchheimer coefficient. Note that throughout the paper, viscosity means
dynamic viscosity of the fluid but not the effective (Brinkman) viscosity. The
superscript * denotes the intrinsic average. The local average and intrinsic average can
be linked by the Dupuit-Forchheimer relationship, for example, p ¼ 1p*.

At the interface between the homogeneous fluid and porous medium regions,
additional boundary conditions must be applied to couple the flows in the two regions.
In the present study, the stress jump condition of Ochoa-Tapia and Whitaker (1998) is
applied:

m

1

›ut

›n

����
Porous

2m
›ut

›n

����
Fluid

¼ b
mffiffiffiffi
K

p ut

����
Interface

þb1ru
2
t ð5Þ

where in the porous medium region, ut is the Darcy velocity component parallel to the
interface aligned with the direction t and normal to the direction n while in
the homogenous fluid region ut is the fluid velocity component parallel to the
interface; b and b1 are adjustable parameters which account for the stress jump at the
interface.

Ochoa-Tapia and Whitaker (1998) derived analytical expressions for parameters
b and b1 which indicate their dependence on permeability and porosity. They
concluded that these two parameters are both of order one. Ochoa-Tapia and Whitaker
(1995b) experimentally determined that b varies from þ 0.7 to 21.0 for different
materials with permeability varying from 15 £ 1026 to 127 £ 1026 in.2 and average
pore size from 0.016 to 0.045 in. There is presently no experimental data for b1. It is not
known how much the two parameters may change from one type of interface to
another; and it is assumed in this study that the changes should be in the same range as
those for different types of materials. Thus, for the purpose of demonstrating
the implementation of the present formulation, both b and b1 are varied in the range
20.7 to þ0.7 in the present study.

In addition to equation (5), the continuity of velocity and normal stress prevailing at
the interface is given by:

~ujFluid ¼ ~ujPorous ¼ ~vInterface ð6Þ

m

1

›un

›n

����
Porous

2m
›un

›n

����
Fluid

¼ 0 ð7Þ

where in the porous medium region, un is the Darcy velocity component normal to the
interface; and in the homogenous fluid region, un is the fluid velocity component
normal to the interface. By combining with the appropriate boundary conditions of the
composite region, equations (1)-(7) can be used to simulate the flow in a system
composed of a porous medium and a homogenous fluid.
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3. Discretization of the governing equations
3.1 Homogenous fluid region
A typical control volume is shown in Figure 2. For a general dependent variable w,
a final discrete form over the control volume can be written as:

Fe þ Fw þ Fn þ Fs ¼ S ð8Þ

where Fe, Fw, Fn and Fs are the overall fluxes (including both convection and diffusion)
of w at faces e, w, n, s, which denote east, west, north, and south of the control volume;
and S is the source term. The detailed numerical methodology for obtaining the
convective flux (Fc

e;F
c
w;F

c
n; and Fc

s) and diffusive flux (Fd
e ;F

d
w;F

d
n; and Fd

s ) are
given in Ferziger and Perić (1999).

With the midpoint rule approximation, the convective flux at face east can be
calculated as:

Fc
e ¼

Z
Se

rw~u · ~ndS < mewe ð9Þ

where me is the mass flux cross the surface e; Se is the surface area of face e; and we is
the value of w at the center of the cell face. me and Se can be calculated as:

me ¼ reðS
xuþ SyvÞe; Se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sx
e

� �2
þ Sy

e

� �2
q

ð10Þ

where u and v are the velocity components in the x and y directions; Sx and S y are the
surface vector components.

To avoid the non-orthogonal effect, the midpoint rule with the deferred correction
term (Muzaferija, 1994) applied to the integrated diffusive flux is given by:

Fd
e ¼ me

›w

›n

� �
e

Se ¼ meSe
›w

›j

� �
e

þmeSe
›w

›n

� �
e

2
›w

›j

� �
e

" #old

ð11Þ

If an implicit flux approximation of the term ð›w=›jÞe is applied, the final expression of
equation (11) then becomes:

Figure 2.
A typical two-dimensional
control volume
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Fd
e ¼ meSe

wE 2 wP

LPE

þ meSeðgradwÞe
Old

· ~n2 ~ij

� 	
ð12Þ

where LPE stands for the distance between P and E; ~ij is the unit vector in the
j-direction.

The different methods to approximate the value ofw and its derivative at the cell face
result in different interpolation schemes. In the present study, the central difference
scheme is used. Then the cell-face values of the variables are approximated as:

we < we0 ¼ lewE þ ð1 2 leÞwP for face e ð13Þ

where the interpolation factor le is defined as:

le ¼
~re 2 ~rP
�� ��

~re 2 ~rP
�� ��þ ~rE 2 ~re

�� �� ð14Þ

where ~re is the position vector.
Equation (13) is a second-order approximation at the location e0 on the straight line

connecting nodes P and E (Figure 2). If the cell-face center e does not coincide with
the location e0, a correction term needs to be added in equation (13) to restore the
second-order accuracy, which can be expressed as follows:

we < we0 þ gradw
� �

e0
· ~re 2 ~re0
� �

ð15Þ

To obtain the deferred derivatives at the cell face, they are calculated first at the control
volume centers and then interpolated to the cell faces. By using the Gauss’ theorem, the
derivative at the CV centers can be approximated by the average value over the cell:

›w

›xi

� �
P

<

R
V

›w
›xi

dV

DV
¼

Z
S

w~ii · ~ndS <
c

X
wcS

i
c; c ¼ e; n;w; s ð16Þ

Then the cell-center derivatives can also be interpolated to the cell-face centers using
the same interpolation as that described by equations (13)-(15).

The volume integral of the source term is:

Qw ¼

Z
V

SwdV < SwDV ð17Þ

where V is the cell volume. For the unsteady source term, a three-level second order
scheme is used:

›w

›t
¼

3wn
p 2 4wn21

p þ wn22
p

� 	
2Dt

ð18Þ

where Dt is the time step, n is the time level. All the steady-state terms in the equations
are discretized using the implicit scheme.

The momentum equations contain a contribution from the pressure. The volume
integral of the pressure gradient term in u-momentum equation can be obtained by:
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Qp
u;P ¼

Z
V

2
›p

›x

� �
P

dV < 2
dp

dx

� �
P

DV ð19Þ

Then the final discrete form of the u-momentum equation is:

Au
PuP þ

l

X
Au

l ul ¼ Q*u;P 2
dp

dx

� �
P

DV ð20Þ

where P is the index of an arbitrary node; the index l denotes the four neighboring points
E, W, S, N; the coefficients Aw

P , Aw
E , Aw

W , Aw
N , Aw

S are those of the resultant algebraic
equations; and Q*u;P is the integral of the source term contributed by other forces.

In the present study, SIMPLEC method, developed by van Doormal and Raithby
(1984) is applied to couple the velocity and pressure. To avoid oscillations in the
pressure or velocity, the interpolation proposed by Rhie and Chow (1983) is adopted:

ume ¼ ðumÞe 2 DVe
1

Au
P þ

l

P
Au

l

0
B@

1
CA

e

dp

dx

� �
e

2
dp

dx

� �
e

" #m21

ð21Þ

where m is integration step for each time level.

3.2 Porous medium region
Equations (3) and (4) recover the standard Navier-Stokes equations when the porosity
approaches unity. Thus, the discretizing procedure for porous medium is similar to
that for the homogenous fluid as the two sets of governing equations are similar in
form. The discretized diffusion flux is similar in form to equation (13). The convective
flux at a cell face is similar in form to equation (9) except for a small change:

Fc
e ¼

Z
Se

ru

1
~u · ~ndS <

meue

1e
ð22Þ

The volume integral of the pressure gradient term (similar in form to equation (18)) is:

Qp*
u;P ¼

Z
V

2
›ð1p*Þ

›x

� �
P

dV < 2 1
dp

dx

� �
P

DV ð23Þ

For the Darcy term in equation (4), the volume integral can be expressed as:

Qu
D ¼

Z
V

2
m1

K
u

� 	
p
dV ¼ 2

m1

K

� 	
p
DV · up ð24Þ

For the Forchheimer term, the volume integral is given by:

Qu
F ¼

Z
V

2
r1CF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 2 þ v2

p ffiffiffiffi
K

p u

 !
p

dV ¼ 2
r1CF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 2 þ v 2

p ffiffiffiffi
K

p

 !
p

DV · up ð25Þ

It is convenient to treat the Darcy and Forchheimer terms as source terms. However,
equations (24) and (25) indicate that, after integrating, both terms become a product of
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Darcy velocity component and a coefficient. The two coefficients can be added into the
coefficients of the algebraic equation Au

p , which will accelerate the convergence rate.
The procedure to obtain the pressure correction equation is also similar to that for

homogenous fluid (equation (21)), except for a small change:

ume ¼ ðumÞe 2 DVe
1

Au
P þ

l

P
Au

l

0
B@

1
CA

e

dð1p*Þ

dx

� �
e

2
dð1p*Þ

dx

� �
e

" #m21

ð26Þ

3.3 Interface treatment
In some cases, structured grids are difficult, even impossible, to construct for complex
geometries. Therefore, in the present study, multi-block grids method is applied to
provide a compromise between the simplicity and wide variety of solvers available for
structured grids and ability to handle complex geometries that unstructured grids allow.

Figure 3 shows details of the interface between two different blocks. Two
neighboring control volumes, lying in Blocks A and B, respectively, share the interface.
The grids in two neighboring blocks match at the interface. The treatment for fluid –
porous medium interface is shown here.

Blocks A and B (Figure 3) represent fluid and porous medium, respectively. The
velocity vector at the interface is given by ~vInterface. It can be written in either the x-y or
n-t coordinate systems as:

~vInterface ¼ u~ex þ v~ey ¼ un~nþ ut~t ð27Þ

where u and v are the components of ~vInterface in the x and y directions; un and ut are the
~vInterface components along n and t directions, respectively; ~ex, ~ey, ~n and ~t are the unit
vectors along x, y, normal and tangential directions.

Figure 3.
Interface between two
blocks with matching

grids
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The component ut then can be written as:

ut ¼ u~ex ·~tþ v~ey ·~t ð28Þ

By combining equations (5), (7) and (27):

m

1

›~vInterface

›n

����
Porous

2m
›~vInterface

›n

����
Fluid

¼ b
mffiffiffiffi
K

p ut~tþ b1ru
2
t
~t ð29Þ

The unit vector (~t) parallel to the interface (Figure 2) is calculated from:

~t ¼
ðxne 2 xseÞ~ex þ ð yne 2 yseÞ~eyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxne 2 xseÞ

2 þ ð yne 2 yseÞ
2

p ¼
Dxe~ex þ Dye~ey

le
ð30Þ

By substituting the components of ~vInterface in the x and y directions, the equation (29)
becomes:

m

1

›u

›n

����
Porous

2m
›u

›n

����
Fluid

¼ b
mffiffiffiffi
K

p
uDxeDxe þ vDyeDxe

l2e
þ b1r

Dxe uDxe þ vDyeð Þ2

l3e
ð31Þ

m

1

›v

›n

����
Porous

2m
›v

›n

����
Fluid

¼ b
mffiffiffiffi
K

p
uDxeDye þ vDyeDye

l2e
þ b1r

Dye uDxe þ vDyeð Þ2

l3e
ð32Þ

The derivatives at the interface are calculated from the values at auxiliary nodes
L0 and R0; these nodes lie at the intersection of the cell face normal n and straight lines
connecting nodes L and N or R and NR, respectively, as shown in Figure 3. The normal
gradients at the interface can be calculated by using the first order difference
approximation:

›u

›n

����
Porous

¼
ujR02uje
LeR0

;
›v

›n

����
Porous

¼
vjR02vje
LeR0

ð33Þ

›v

›n

����
Fluid

¼
vje2vjL0

LL0e
;

›v

›n

����
Fluid

¼
vje2vjL0

LL0e
ð34Þ

The Cartesian velocity components at L0 and R0 can be calculated by using bilinear
interpolation or by using the gradient at the control volume center:

ujL0¼ ujLþðgraduÞL ·
!
L0L ð35Þ

To obtain higher order approximation of the derivatives, the velocity components at
more auxiliary nodes may be needed. Alternatively, the shape functions may be used,
which produces a kind of combined finite element/finite volume method for calculating
the higher order approximations.

By using equations (31)-(35) and explicitly calculating the terms at the right hand
sides of equations (31) and (32), the Cartesian velocity components u and v at the
interface are obtained. Then the convective fluxes at the interface can be calculated.
The diffusive fluxes are calculated from equations (33)-(35). Then the coefficients
AL and AR can be obtained.
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To close the algebra equation system, the pressure at the interface must be
determined. However, Betchen et al. (2006) pointed out that the pressure gradient at the
interface may not be continuous due to the rather large Darcy and Forchheimer terms
(equation (4)), which may result in a rapid pressure drop at the porous side. This
discontinuity of the pressure gradient becomes more severe at higher Reynolds number
and lower Darcy number. Thus, it requires special treatment to estimate the interface
pressure from that of the vicinity at either side. A simplistic pressure estimation may
give unrealistic, oscillatory velocity profile. The coupling issue of pressure-velocity at
the interface was described in a recent paper by Betchen et al. (2006) who proposed a
solution that enables stable calculations. The pressure is extrapolated in the fluid side
to a location at a small distance near the interface. From this location, a momentum
balance is then used to estimate the interface pressure. This estimate is then averaged
with the pressure extrapolated from the porous side to obtain the interface pressure. In
the present paper, a less complex treatment was adopted. Extrapolations from the fluid
and porous sides give two different estimates of the interface pressure. The average of
the two estimates is used as the interface pressure. A small number of iterations is
required for accuracy.

4. Results and discussion
The Reynolds number is based on the mean velocity and the height of the cylinder,
Re ¼ rUH=m, Darcy number is Da ¼ K=H 2, and Forchheimer coefficient
CF ¼ 1:75=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð15013Þ

p
, as used by Nithiarasu et al. (1999). Non-uniform, body-fitted

and non-orthogonal meshes are employed, where the density of meshes around the
cylinder is larger than those areas far away (Figure 1(b)). At the left boundary, the
incoming flow is uniform, and at the other three boundaries, ›u=›n ¼ 0. The initial
conditions for the computation were either uniform flow at the inlet or the results of a
previous calculation, often at different Reynolds number, Darcy number or porosity
values. The time step is set equal to 1022, and the convergence criteria for each time
level is set as follows: P

wmþ1
i; j 2 wm

i; jP
wmþ1
i; j # 1c

��� ��� ð36Þ

where 1c ¼ 1026.
To validate the present program, the drag and lift coefficients for the flow around a

circular cylinder are compared with those in previous studies. The results shown in
Table I agree well with the benchmark studies. Considering the computational cost and
accuracy, a grid independency check (details not shown) shows that a 240 £ 120 mesh
is enough for use in subsequent computations.

Re ¼ 100 Re ¼ 200
CD CL CD CL

Braza et al. (1986) 1.36^0.015 ^0.250 1.40^0.050 ^0.75
Liu et al. (1998) 1.35^0.012 ^0.339 1.31^0.049 ^0.69
Calhoun (2002) 1.33^0.014 ^0.298 1.17^0.058 ^0.67
Present 1.38^0.009 ^0.335 1.36^0.050 ^0.73

Table I.
Comparison of drag and

lift coefficients
with previous studies
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Figure 4 shows the instantaneous streamlines for different Reynolds number, at
constant porosity 1 ¼ 0:4, Darcy number Da ¼ 1024, jump coefficients b ¼ 0 and
b1 ¼ 0. The flow phenomenon of this case is like those of the non-porous one. As the
Re ¼ 20, a closed steady recirculation region consisting of twin symmetric vortices
forms behind the cylinder. This recirculation region increases in size with the increase
in Reynolds number, shown as Re ¼ 40. When the Reynolds number becomes larger,
the flow becomes unsteady; the vortices in the separation bubble start to separate

Figure 4.
Instantaneous streamline
contours at 1 ¼ 0:4,
Da ¼ 1024 and b ¼ 0,
b1 ¼ 0. (a) Re ¼ 20;
(b) Re ¼ 40; (c) Re ¼ 100;
(d) Re ¼ 200

(a)

(b)

(c)

(d)
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alternatively from the trailing edge of the square cylinder and move downstream,
which is the vortex shedding phenomena. Owing to the permeability characteristic of
the porous media, the shedding intensity would be less than that in solid one, and the
critical Reynolds number, where the flow changes to unsteady from steady, is less than
that in solid one.

Figure 5 shows out the instantaneous streamline contours for different Darcy
number at 1 ¼ 0:4, Re ¼ 20 and b ¼ 0, b1 ¼ 0. It can be seen that when Da ¼ 1022,

Figure 5.
Instantaneous streamline

contours at 1 ¼ 0:4,
Re ¼ 20 and b ¼ 0,

b1 ¼ 0. (a) Da ¼ 1022;
(b) Da ¼ 1023;
(c) Da ¼ 1024;
(d) Da ¼ 1025

(a)

(b)

(c)

(d)
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there is no vortex formation behind the cylinder. When Da decreases from 1023 to
1025, as less fluid flows through the cylinder, the vortex is formed and its circulation
length is increased. The flow filed resembles that around a solid cylinder, when Da
approaches zero.

Figure 6 shows the drag and lift coefficient history development, for Re ¼ 200,
1 ¼ 0:4, Da ¼ 1024 and b ¼ 0, b1 ¼ 0. They show that the unsteady vortex shedding
becomes periodic, and the frequency of lift coefficient is twice of drag coefficient, which
are consistent with those of solid ones (Davis and Moore, 1982). Figure 7 shows this
periodic characteristic streamline contour in one period. It is shown that, different from
the solid one, the wake flow coming backwards may penetrate into the porous cylinder.
However, at Re ¼ 250, for the drag coefficient shown in Figure 8, it is not a simple sine
wave and there seems to be a small modulation in shedding frequency. This kind of
phenomena was also found for the solid case by Davis and Moore (1982), which is out of
the scope of the present study. So in the following study, the Re ranges from 20 to 200.

Table II shows the influence of the stress jump parameters b and b 1 at the lower
Reynolds numbers Re ¼ 20 and 40, with 1 ¼ 0:4 and Da ¼ 1024. When Re ¼ 20, the b
effect is noticeable, whereas b1 has less effect. From equation (5), if the permeability K
is small, that is Darcy number is small, the viscous term bðm=

ffiffiffiffi
K

p
Þut is large. An

interesting phenomenon is that when Re ¼ 40, for different combinations of b and b1,
the flow would become steady or unsteady. The instability at low Re is unexpected and
may be caused by the sudden large stress jump at the interface. Figure 9 shows the
instantaneous stream contours for these stress jump interface conditions. By checking
the stream contours in one periodic time, it is found that the two vortices are not shed
from the cylinder, but its size alternate periodically from small to large. This
observation shows the importance of the stress jump boundary conditions. The stress
jump parameters b and b 1 are empirical inputs dependent on the porous medium

Figure 6.
Drag (up) and lift (down)
coefficient histories, at
Re ¼ 200, 1 ¼ 0:4,
Da ¼ 1024 and b ¼ 0,
b1 ¼ 0

Time
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properties as discussed in Section 2. In the numerical model these boundary
parameters will determine the flow of fluid into as well as out of the porous medium;
and the differences in bleed flow may have caused the changes in the vortex formation.
Note that b and b1 are not numerical stability parameters which need to be optimized.

Table III shows the influence of the stress jump parameters b and b1 at the higher
Reynolds numbers Re ¼ 100, and 200, with 1 ¼ 0:4 and Da ¼ 1024. It can be seen that
for the same Reynolds number, b effect is still more obvious than b1. Yu et al. (2007)
showed that the viscous term bðm=

ffiffiffi
k

p
Þut effect dominates for Re ¼ 20, and suggested

that the inertial term b1ru
2
t , in equation (5), may be important at high Reynolds number.

However, the Reynolds number in the present study was not increased above 200 to
avoid the complications from 3D flow and the frequency modulation noted above.

Table III also shows in greater detail the effect of b and b1 for Re ¼ 200,
respectively. It can be seen that when b increases from 20.7 to 0.7, the average drag
coefficient, and the amplitude of both lift and drag coefficients shows a decreasing
trend; but for the shedding period, there is no consistent trend. When b1 increases from
20.7 to 0.7, the change is not large. This shows that in equation (5), the viscous term
bðm=

ffiffiffi
k

p
Þut is more important than the inertial term b1ru

2
t .

Figure 7.
Streamline contours

at Re ¼ 200, 1 ¼ 0:4,
Da ¼ 1024 and b ¼ 0,
b1 ¼ 0, (a) CL ¼ max ;

(b) CL ¼ 0; (c) CL ¼ min

(a)

(b)

(c)
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Table IV shows the influence of Darcy number. For the steady cases, Re ¼ 20 and
40, the drag coefficient and length of recirculation zone decreases when the Darcy
number increases. This is due to more porous flow. It can be seen that the results
for Da ¼ 1024 and 1025 changes little, as for Da # 1024, the flow inside the porous
media is rather small, called Darcy flow conventionally. For Re ¼ 100, it is
interesting to find that the flow is still steady when Da ¼ 1022. For the unsteady
cases, Re ¼ 100 and 200, there is no clear trend arising from Darcy number. The
flow is more complicated because the porous flow may affect the location of the
streamline separation near the back edge of the square cylinder (see instantaneous
streamlines in Figure 4).

Re b b1 CD L/H

20 20.7 0 1.991 1.23
0 0 2.411 1.26
0.7 0 2.550 1.27
0 20.7 2.376 1.26
0 0 2.411 1.26
0 0.7 2.371 1.26

40 20.7 0 1.448-1.463 –
0 0 1.611 2.77
0.7 0 1.534-1.568 –
0 20.7 1.502-1.539 –
0 0 1.611 2.77
0 0.7 1.611 2.76

Table II.
Drag coefficient and
length of the recirculation
zone, for low Re, with
1 ¼ 0:4, and Da ¼ 1024

Figure 8.
Periodic drag coefficient
histories, at Re ¼ 250,
1 ¼ 0:4, Da ¼ 1024 and
b ¼ 0:7, b1 ¼ 0
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Figure 9.
Instantaneous streamline

contours at Re ¼ 40,
1 ¼ 0.4, Da ¼ 1024. (a)

b ¼ 0, b1 ¼ 0; (b) b ¼ 0,
b1 ¼ 0:7; (c) b ¼ 0,

b1 ¼ 20:7; (d) b ¼ 0:7,
b1 ¼ 0; (e) b ¼ 20:7,

b1 ¼ 0

(a)

(b)

(c)

(d)

(e)
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Table V shows that at higher porosity, there is decrease of drag coefficient (average for
unsteady cases). For the unsteady cases the lift amplitude is smaller at higher porosity.
This behavior may be explained by the effect of more porous flow through the cylinder.
There are not much effect of porosity on recirculation length and shedding period.
However, the effect of porosity is smaller than that of Darcy number which is consistent
with the observation of Jue (2004).

Re b b1 tp CL CD (amplitude)

100 0 0.7 6.97 20.265-0.265 1.432-1.447 (0.015)
0 0 6.94 20.269-0.269 1.433-1.448 (0.015)
0 20.7 7.08 20.266-0.266 1.431-1.447 (0.016)
0.7 0 6.93 20.264-0.264 1.441-1.457 (0.016)
0 0 6.94 20.269-0.269 1.433-1.448 (0.015)

20.7 0 7.02 20.270-0.270 1.417-1.432 (0.015)
200 0 0.7 6.63 20.788-0.788 1.585-1.730 (0.145)

0 0.5 6.59 20.783-0.783 1.584-1.726 (0.142)
0 0.3 6.60 20.782-0.782 1.583-1.725 (0.142)
0 0 6.60 20.782-0.782 1.581-1.722 (0.141)
0 20.3 6.61 20.783-0.783 1.581-1.724 (0.143)
0 20.5 6.66 20.785-0.785 1.582-1.726 (0.144)
0 20.7 6.63 20.787-0.787 1.584-1.731 (0.147)
0.7 0 6.62 20.759-0.759 1.568-1.706 (0.138)
0.5 0 6.64 20.765-0.765 1.571-1.710 (0.139)
0.3 0 6.62 20.770-0.770 1574-1.714 (0.140)
0 0 6.60 20.782-0.782 1.581-1.722 (0.141)

20.3 0 6.60 20.799-0.799 1.593-1.736 (0.143)
20.5 0 6.67 20.816-0.816 1.604-1.750 (0.146)
20.7 0 6.53 20.840-0.840 1.621-1.771 (0.150)

Table III.
Drag, lift and period for
high Re with unsteady
vortex shedding, with
1 ¼ 0:4, and Da ¼ 1024

Re Da tp CL CD(amplitude) L/H

20 1025 – 0 2.413 1.32
1024 – 0 2.411 1.26
1023 – 0 2.143 1.21
1022 – 0 1.974 –

40 1025 – 0 1.616 2.81
1024 – 0 1.611 2.77
1023 – 0 1.535 2.66
1022 – 0 1.472 –

100 1025 7.15 20.225-0.225 1.284-1.293 (0.009) –
1024 6.94 20.269-0.269 1.433-1.448 (0.015) –
1023 7.10 20.262-0.262 1.638-1.658 (0.020) –
1022 – 0 1.096 –

200 1025 6.43 20.546-0.546 1.343-1.418 (0.075) –
1024 6.60 20.782-0.782 1.581-1.722 (0.141) –
1023 6.23 20.310-0.310 1.634-1.816 (0.182) –
1022 6.52 20.212-0.212 1.064-1.288 (0.224) –

Table IV.
Effect of porosity with
Da ¼ 1024 and
b ¼ 0;b1 ¼ 0
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5. Conclusion
The two-dimensional flow around a porous square cylinder has been carried out
numerically using finite volume method, based on the body-fitted, non-orthogonal
grids, and multi-block technology. This treatment of a simple geometry with
body-fitted and multi-block grids has the advantage that it may be extended to more
complex geometries like the flow past several square cylinders. The flow in porous
region is described by the generalized Darcy-Brinkman-Forchheimer extended model,
which considers the inertia, convective, and viscous effects.

The flow range considered was varied from steady state to unsteady Reynolds
number 200, and different porosity, Darcy number and stress jump parameters were
considered. With a larger Darcy number, the Reynolds number has to be higher before
the vortex shedding phenomena occurs. The results also show that the interface stress
jump parameters play an important role in the stability of the flow around a porous
square cylinder. The effects of the stress jump parameters, b and b1 ranging from
20.7 to 0.7, are given for the flow condition from Re ¼ 20 to 200. The first coefficient b
has a more noticeable effect whereas the second coefficient b1 has small effect, even for
Re ¼ 200. Generally, a larger porosity cylinder results in a smaller drag coefficient and
shedding period. The Darcy number effect becomes smaller when Da # 1024; at larger
Darcy number, the fluctuation-amplitude of drag coefficient increases.
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